GANP regulates the choice of DNA repair pathway by DNA-PKcs interaction in AID-dependent IgV region diversification.
نویسندگان
چکیده
RNA export factor germinal center-associated nuclear protein (GANP) interacts with activation-induced cytidine deaminase (AID) and shepherds it from the cytoplasm to the nucleus and toward the IgV region loci in B cells. In this study, we demonstrate a role for GANP in the repair of AID-initiated DNA damage in chicken DT40 B cells to generate IgV region diversity by gene conversion and somatic hypermutation. GANP plays a positive role in IgV region diversification of DT40 B cells in a nonhomologous end joining-proficient state. DNA-PKcs physically interacts with GANP, and this interaction is dissociated by dsDNA breaks induced by a topoisomerase II inhibitor, etoposide, or AID overexpression. GANP affects the choice of DNA repair mechanism in B cells toward homologous recombination rather than nonhomologous end joining repair. Thus, GANP presumably plays a critical role in protection of the rearranged IgV loci by favoring homologous recombination of the DNA breaks under accelerated AID recruitment.
منابع مشابه
MDC1 regulates DNA-PK autophosphorylation in response to DNA damage.
DNA damage initiates signaling events through kinase cascades that result in cell cycle checkpoint control and DNA repair. However, it is not yet clear how the signaling pathways relay to DNA damage repair. Using the repeat region of checkpoint protein MDC1 (mediator of DNA damage checkpoint protein 1), we identified DNA-PKcs/Ku as MDC1-associated proteins. Here, we show that MDC1 directly inte...
متن کاملHistone H3.3 promotes IgV gene diversification by enhancing formation of AID‐accessible single‐stranded DNA
Immunoglobulin diversification is driven by activation-induced deaminase (AID), which converts cytidine to uracil within the Ig variable (IgV) regions. Central to the recruitment of AID to the IgV genes are factors that regulate the generation of single-stranded DNA (ssDNA), the enzymatic substrate of AID Here, we report that chicken DT40 cells lacking variant histone H3.3 exhibit reduced IgV s...
متن کاملDNA-PKcs Negatively Regulates Cyclin B1 Protein Stability through Facilitating Its Ubiquitination Mediated by Cdh1-APC/C Pathway
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair. DNA-PKcs has also been shown recently functioning in mitotic regulation. Here, we report that DNA-PKcs negatively regulates the stability of Cyclin B1 protein through facilitating its ubiquitination mediated by Cdh1 / E 3 ubiquit...
متن کاملDifferential phosphorylation of DNA-PKcs regulates the interplay between end-processing and end-ligation during nonhomologous end-joining.
Nonhomologous end-joining (NHEJ) is a major DNA double-strand break repair pathway that is conserved in eukaryotes. In vertebrates, NHEJ further acquires end-processing capacities (e.g., hairpin opening) in addition to direct end-ligation. The catalytic subunit of DNA-PK (DNA-PKcs) is a vertebrate-specific NHEJ factor that can be autophosphorylated or transphosphorylated by ATM kinase. Using a ...
متن کاملDNA-PKcs activates the Chk2–Brca1 pathway during mitosis to ensure chromosomal stability
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is known to have a critical role in DNA double-strand break repair. We have previously reported that DNA-PKcs is activated when cells enter mitosis and functions in mitotic spindle assembly and chromosome segregation. Here we report that DNA-PKcs is the upstream regulator of the Chk2-Brca1 pathway, which impacts microtubule dynami...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 192 12 شماره
صفحات -
تاریخ انتشار 2014